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1 Introduction

Fear influences one’s judgement, behavior, and decision making. A fearful person
shows an increased concern with risk and tends to be less willing to participate
in risky lotteries. For instance, a person who becomes fearful after an extreme
stock market fall may overreact and sell more than he or she otherwise would
have. Although fear is an important factor in decision making under risk and
uncertainty, few economists have studied the topic and a formal analysis of the
behavioral consequences of fear remains absent.1

This paper proposes a game theoretic model of players who can transition from
a neutral to a fearful state of mind. A player’s state of mind determines his or her
utility function. While fear can manifest itself in many ways, in this paper fear
is defined as an emotion with a specific trigger and which causes an increased
concern with risk.2 More specifically, the assumption is that a player is more
risk averse in the fearful than in the neutral state of mind. By focusing on the
behavioral consequences of fear as mediated through an increased risk aversion,
I abstract from the negative utility from the experience of fear. I assume that a
player transitions to the fearful state of mind after an increase in the probability
or cost of negative outcomes. A negative outcome is an outcome bad enough to
potentially instill fear when anticipated.

The players hold initial beliefs over the expected cost of negative outcomes
when the game begins. A player transitions to the fearful state of mind after
an increase in the expected cost of negative outcomes. Since the players’ beliefs
directly affect their utility functions, the game is a psychological game (Battigalli
& Dufwenberg, 2009; Battigalli et al., 2019).3 Consider for example a person who
takes a walk in the park late at night. A negative outcome in this interaction

1The interest for fear and decision making has grown among empirical and experimental
economists during the decade since the financial crisis (see e.g. Callen et al., 2014; Campos-
Vazquez & Cuilty, 2014; Cohn et al., 2015; Dijk, 2017; Guerrero et al., 2012; Guiso et al.,
2018; Kuhnen & Knutson, 2011; Malmendier & Nagel, 2011; Nguyen & Noussair, 2014; Wang
& Young, 2020). The relationship between fear and risk attitudes is not found in all papers
(see e.g. Alempaki et al., 2019; Gärtner et al., 2017).

2Psychology literature emphasize that once an individual becomes fearful, his or her concern
with risk increases Holtgrave & Weber (see e.g. 1993); Lerner & Keltner (see e.g. 2000, 2001);
Lerner et al. (see e.g. 2003); Loewenstein et al. (see e.g. 2001); Smith & Ellsworth (see e.g.
1985); Smith & Lazarus (see e.g. 1991).

3For a general discussion of psychological game theory and its usefulness in modeling emo-
tions and other belief-dependent motivations, see e.g. Battigalli & Dufwenberg (2020).
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is to be robbed of all of one’s money and one may become fearful if a stranger
approaches.

The role of fear is illustrated in three applications. The first application is
a sequential game between a robber and a victim. This game illustrates how a
player may use his or her knowledge of another player’s fear sensitivity to bring
about a desired outcome when the players’ incentives are misaligned. The second
is a simplified version of Diamond & Dybvig’s (1983) seminal bank run game with
the addition of an exogenous risk that a player ‘needs money tomorrow’ and is
forced to withdraw. This game illustrates how fear can affect the outcome also
when players’ incentives are aligned, and how fear of a bank run can spread in
a population and cause a bank run. The third application illustrates how fear
may affect a player’s willingness to take a vaccine when a public health authority
informs him or her about a disease. This application highlights the tendency of
fear to strengthen a player’s response to information that increases the probability
or cost of negative outcomes.

The observation that fear can be of importance in strategic interactions has
been made before. Shelling (1980) discusses the strategic consequences of fear in
a situation similar to the robbery game studied in this paper. Shelling considers
a homeowner who investigates a noise at night with a gun in his hand, just to find
a burglar, also armed with a gun. The situation has two equilibria. In one, no
one shoots and the burglar leaves quietly. In the other, the homeowner and the
burglar shoot each other. While neither of them prefers the shooting equilibria,
Shelling notes that they may shoot not by calculation, but by nervousness. This
situation can be formalized using the model proposed in this paper. If either the
homeowner or the burglar were to become fearful, then shooting becomes the
unique equilibrium.

Psychological game theory has been used to model other emotions, for exam-
ple guilt and anger (Battigalli & Dufwenberg, 2007; Battigalli et al., 2019). Intu-
itively, anger is the emotion most closely related to fear. Battigalli et al. (2019)
model players with a belief-dependent utility function that assigns a weight both
to own and others’ material payoff. In the absence of frustration, the weight on
others’ material payoff is zero. However, as a player’s expected material payoff
decreases, his or her frustration increases. As frustration increases, the player’s
negative concern for others’ payoffs increases. Similar to the players studied in
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this paper, the players in (Battigalli et al., 2019) form initial beliefs over how
the interaction will play out, and a disadvantageous change alters their utility
function. However, Battigalli et al. study players who become frustrated if
their expected material payoff decreases, whereas this paper studies players who
transition to a fearful state of mind if their expected cost of negative outcomes
increases. Moreover, while the triggers of frustration and fear are similar, frus-
tration causes a player to have a negative concern for others’ payoffs whereas fear
causes an increased concerned with risk.

Caplin & Leahy (2001) propose a model of anticipatory emotions. They study
a two-period model of lotteries with a mapping from physical lotteries to mental
states. The decision maker’s first-period utility may for example decrease in the
variance of the second-period realizations of the lottery. Such a decision maker is
said to experience anxiety prior to the resolution of the lottery and is less likely
to take part in lotteries with high variance. By contrast, the focus of this paper
is on the increased concern with risk in the fearful state of mind.

Another closely related paper is Kőszegi & Rabin (2007). Kőszegi & Rabin
build on Kahneman & Tversky’s (1979) work on prospect theory. They model a
decision maker who evaluates an outcome relative to a reference point formed by
the decision makers recent beliefs. The decision maker’s utility is a combination
of a reference-independent “consumption utility” and a “gain loss” utility that
depends on the difference between the consumption utility and the reference
point.

The decison maker’s reference point determines how much risk he or she is
willing to take on. The reference point can be either deterministic or stochastic.
A decision maker who expects risk views a lottery as less aversive than a decision
maker who does not expect risk to start with. Moreover, the decision maker is
sophisticated in the sense that he or she correctly predicts the environment and
own behavior in the environment.

Similarly, in this paper a player’s transition to the fearful state of mind de-
pends on the player’s initial beliefs over how the interaction will play out. The
players are also sophisticated in the sense that they can correctly predict own
and others’ state transitions and the behavioral consequences. However, while
Kőszegi & Rabin’s decision maker has a reference-dependent utility function, the
players in my model have belief-dependent transition probabilities between their
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states of mind. Further, Kőszegi & Rabin’s decision maker is concerned with
expected consumption utility and any deviations therefrom, whereas the players
in this paper are concerned with the expected cost of negative outcomes.

Dillenberger & Rozen (2015) also study decision makers whose risk attitude
may change during the decision making process. They model a decision maker
who makes repeated decisions over lotteries. The decision maker becomes more
risk averse after a disappointing realization than after an elating. Realizations
are classified as disappointing or elating using a threshold rule. By contrast, this
paper studies players who may transition to a fearful state of mind when the
expected cost of negative outcomes increases.

This paper proceeds as follows. Section 2 presents the model and preliminaries
of psychological game theory. Sections 3, 4, and 5 apply the model to three
interactions, a robbery game, a bank run game, and a public health intervention.
Section 6 discusses the model and concludes.

2 The Model

2.1 Preliminaries

Game form The focus of this paper is on a class of finite multi-stage game
forms with observed actions and perfect recall.4 Let I = {1, ..., n} denote the
finite set of personal players. The game form may contain chance moves or
moves by “nature” denoted by player 0. Let I0 = I ∪ {0}.

The multi-stage game consists of L + 1 stages indexed by l ∈ {0, ..., L}. At
the end of each stage, all players observe the stage’s action profile. Let a0 ≡
(a0

0, a
0
1, ..., a

0
n) be the stage-0 action profile. At the beginning of stage 1, players

know history h1, which can be identified with a0. Similarly, define hl+1, the
history at the end of stage l, to be the sequence of actions in the previous periods,
hl+1 = (a0, a1, ..., al). Let the initial, or empty, history be denoted by h0, the set
of non-terminal histories denoted by H, and let the set of terminal histories, or
plays, hL+1, be denoted by Z.

Let Ai(hl) denote the feasible actions of player i ∈ I in stage l when the
history is hl, and let A(hl) = ×i∈IAi(hl). In each stage the players, including

4A game form (or a game protocol) specifies the structure of a strategic situation: the
players, how they can choose, and the material consequences of their actions.
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chance, simultaneously choose actions from a finite subset of (potentially) history-
dependent feasible actions Ai(hl). This can be done without loss of generality
since an inactive player can be represented as a player whose feasible action Ai(hl)
is a singleton with “do nothing” as the only action.

If chance is active at hl, its move is specified by the probability mass function
p0(·|h) ∈ ∆(A0(hl)). Chance selects a feasible action at random, and the action
is revealed to the players after the stage. The players have identical priors on the
probability of chance’s actions.

The material payoffs of the players’ actions are determined by an outcome
function π : Z → Rn that associates each play z with a profile of material payoffs.

Beliefs Players form beliefs over own and others’ behavior, and over others’
beliefs about behavior. A player’s beliefs are modeled as a hierarchical conditional
probability system (Battigalli et al., 2019). A player’s beliefs over own and other’s
behavior – the plays z ∈ Z – are called first-order beliefs. They are defined
for each history h ∈ H. The first-order beliefs are denoted by αi(·|Z(h)) ∈
∆(Z(h)), where ∆(Z(h)) is the set of probability measures on Z(h). The system
of beliefs αi = (αi(·|Z(h)))h∈H must satisfy two properties. First, Bayes’ rule
for conditional probabilities must hold whenever defined. Second, if in stage l
player i moves simultaneously with other players, then i must believe that the
simultaneous actions of the co-players are statistically independent of i’s action.5

The first-order beliefs αi, are composed of two parts: player i’s beliefs over own
and over other’s behavior. The beliefs over own behavior, αi,i ∈ ×h∈H∆(Ai(h)),
take the form a behavior strategy. They can be interpreted as the player’s plan
since they are the result of the player’s contingent planning of which action to
take at each history.6

A player’s beliefs over other players’ first-order beliefs constitute his or her
second-order beliefs. Let ∆i,1 denote player i’s space of first-order beliefs. Second-
order beliefs are systems of conditional probabilities over both plays, z ∈ Z, and
co-players’ first-order beliefs, α−i ∈ ×j 6=i∆j,1, for each history h ∈ H. Player i’s
second-order beliefs are denoted by βi = (βi(·|h))h∈H ∈ ×h∈H∆(Z(h)×j 6=i ∆j,1).

5See Battigalli et al. (2019) or Battigalli & Dufwenberg (2020) for a more detailed specifi-
cation of the belief hierarchies and their properties.

6The beliefs over the behavior of others, αi,−i ∈ ×h∈H∆(A−i(h)), also constitute a behavior
strategy if there is only one other player.
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Player i’s space of second-order beliefs are denoted by ∆i,2. It can be shown that
the first-order beliefs αi can be derived from the second-order beliefs βi such that
beliefs of different orders are mutually consistent (see e.g. Battigalli et al., 2019).

2.2 States of mind

This paper proposes a model of players who can transition from a neutral to
a fearful state of mind. A player’s preferences at a given history depend on
material consequences and the player’s state of mind. The players studied in
this paper are sophisticated in the sense that they correctly anticipate own and
others’ transitions to the fearful state of mind, and how the fearful state affect’s
preferences. However, the model allows for the study of players who are either
partially naïve, and mistaken about either transition probabilities or preferences,
or naïve and mistaken about both.

As will be shown, transitioning to a fearful state of mind may cause a welfare
loss. While defining welfare for emotional players is a non-trivial issue, this paper
measures welfare as the preferences in the neutral state of mind.7 In other words,
a player’s welfare corresponds to his or her material payoff.8

State transitions Psychology research suggests that emotions have a specific
stimuli and a clear starting point and neuroscience research says that the pur-
pose of the fear system is to detect warning signals for impending threats (see
e.g. LeDoux, 1998). A wide variety of external stimuli may trigger a fear re-
sponse.9 Fear stimuli differ between cultures and individuals, and are modelled
as exogenously defined for each player and game, and treated as primitives. The
payoffs of each interaction are normalized such that only outcomes bad enough
to, potentially, trigger a fear response when anticipated have a negative material
payoff.10

7This is similar to the approach in Bernheim & Rangel (2004).
8Behavioral welfare economics is a field of its own (see e.g. Bernheim & Rangel, 2009, for a

discussion).
9Some common fear stimuli are snakes, heights, auto accidents, being in a fight, and losing

one’s job (Geer, 1965).
10A consequence of this modelling choice is increased modeller freedom. As will be shown,

the set of equilibria is sensitive to small changes in payoff around zero.
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Player i’s set of negative outcomes is defined as

Zi,− := {z ∈ Z : πi(z) < 0}. (1)

The emotional system is more likely to respond to changes than to levels of stimuli
(Frederick & Loewenstein, 1999) and each player continuously assesses his or her
situation to detect warning signals.

I define player i’s peril at history h, given his or her first-order belief system
αi as:

Pi(h|αi) =
∑
z∈Zi,−

αi(z|h)|πi(z)|, (2)

where αi(z|h) is player i’s belief, conditional on history h, in the negative outcome
z ∈ Zi,−, and |πi(z)| is the cost of the outcome. In other words, a player’s peril
is his or her expected cost of negative outcomes at history h. Peril increases in
both the probability and cost of negative outcomes.

A warning signal for player i at history h, given the first-order belief system
αi is defined as an increase in peril compared with i’s initial peril:

P ′i (h|αi) = max{0, Pi(h|αi)− Pi(h0|αi)}. (3)

The assumption is that the interactions are fast enough for the initial peril to
be the relevant reference point. Moreover, once in the fearful state of mind, the
players cannot return to the neutral. Research has shown that emotions tend to
linger after the source of the emotion has vanished (Andrade & Ariely, 2019).
Since the interactions are fast, there is not enough time for the players to calm
down even if peril decreases.

The increase in peril required to transition to the fearful state of mind may
differ between players. This heterogeneity is modeled with a sensitivity parameter
τi, which is interpreted as player i’s fear threshold.11

Player i transitions from the neutral to the fearful state of mind if

P ′i (h|αi) ≥ τi. (4)

In other words, player i transitions when the increase in peril is more than he or
11A player’s fear threshold, or fear sensitivity, can be thought of as an innate personality

trait.
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she can bare.

Preferences For simplicity of analysis, preferences in the two states of mind
correspond to the extreme cases of risk neutrality in the neutral state of mind
and a maximal concern with risk in the fearful. In the neutral state of mind,
the player maximizes own expected material payoff. In the fearful state of mind,
the player experiences highly intense fear such that his or her coefficient of risk
aversion goes to infinity, and the player views a gamble in terms of its worst-case
scenarios. A fearful player’s utility function corresponds to the maximin utility
function.

Psychology research has long emphasized the relationship between fear and
risk attitudes. Modern psychology research uses the appraisal-tendency frame-
work (Lerner & Keltner, 2000) to study emotions. This framework states that
each emotion gives rise to a cognitive predisposition to appraise future events in
line with one or more appraisal themes.12 There are five central appraisal themes:
certainty, pleasantness, attentional activity, anticipated action, and control. Fear
is associated with a sense of uncertainty and a lack of a sense of control, both of
which are factors that influence judgments of risk.13

The appraisal-tendency framework predicts that fear causes a person to be less
willing to take risks. The effect of fear on risk attitude has been found to have two
main mechanisms (see e.g. Cohn et al., 2015; Guiso et al., 2018; Lerner & Keltner,
2000, 2001; Lerner et al., 2003; Wang & Young, 2020). First, a fearful person
tends to behave as if their risk aversion has increased. Second, the subjective
probabilities the fearful person assigns to dangerous outcomes increases. The
focus of this paper is on situations of risk rather than uncertainty and I model
the effect of fear on behavior as increased risk aversion.

Decision utility The players’ “decision utility” functions are defined using the
above formalization of fear. A player i moving at history h maximizes a belief-
dependent decision utility function ui : Ai(h)×∆i,2 → R for i ∈ I, h ∈ H, defined

12Those familiar with Frijda’s (1986) action-tendency framework for emotions might notice
that the appraisal-tendency framework can be viewed as an extension of this earlier framework.

13Fear is often associated with unpleasantness. I restrict the focus of this paper to the change
in the utility function rather than the utility from experiencing fear.
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by:

ui(h, ai; βi) =

mina−i∈A−i(h) E[πi|(h, ai, a−i)] if P ′i (h;αi) ≥ τi

E[πi|(h, ai); βi] otherwise ,
(5)

where αi is derived from βi; P ′i (h;αi) is the increase in peril at history h given
beliefs αi; and τi is i’s fear threshold.

While fear is solely determined by the player’s first-order beliefs, a player
intending to use others’ fear to his or her own advantage forms second-order
beliefs over co-players’ first-order beliefs.

Note that while each decision utility function is belief-independent, the tran-
sition between the states of mind is belief-dependent. In addition, because the
players begin in the neutral state of mind and fear is triggered by an increase
in peril, the decision utility at the root coincides with expected material payoffs.
Fear is possible at end nodes, but cannot influence subsequent choices as the
game is over and this paper abstracts from the disutility fear may cause.

Remark Players who can transition between states of mind typically behave
as if they have time-inconsistent preferences. While their preferences are time-
consistent within each state of mind, a player may prefer one action in the neutral
state and another in the fearful. This may lead to self-control problems and a
player in the neutral state of mind may be willing to invest in a commitment
device to constrain the actions of a future fearful self.

In applications of present-biased preferences it is typical to consider a decision
maker as consisting of multiple selves, one for each time period (O’Donoghue &
Rabin, 2001; Thaler & Shefrin, 1981). In a similar way it is possible to consider a
player who can transition between states of mind as a sequence of multiple selves,
one for each state of mind.

2.3 Solution Concept

Because the transition to the fearful state of mind is belief-dependent, the games
are psychological games in the sense of Battigalli & Dufwenberg (2009). The
solution concept I use is the sequential equilibrium (SE) for psychological games
(Battigalli & Dufwenberg, 2009; Battigalli et al., 2019). The SE for psychological
games is an extension of Kreps and Wilson’s (1982) classical notion of a sequential
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equilibrium. The games analyzed are one-shot interactions, and the equilibria
are interpreted as the commonly understood ways to play the game by rational
agents.

I consider games of complete information where the rules of the game and the
players’ fear thresholds and state dependent preferences are common knowledge.14

An SE is an assessment: a profile of behavior strategies σi – the player’s plans –
and conditional second-order beliefs βi such that σi is the plan αi,i derived from
the second-order belief βi. While the SE concept gives equilibrium conditions for
infinite belief hierarchies, the applications of this paper only depend on first- and
second-order beliefs and the SE is defined up to second-order beliefs.

Definition 1 (Battigalli, Dufwenberg & Smith, 2019). Assessment (σi, βi)i∈I is
consistent if for all i ∈ I, h ∈ H, a = (aj)j∈I ∈ A(h)

1. αi(a|h) = Πj∈Iσj(aj|h),
2. marg∆−i,1

βi(·|h) = δα−i;

here αi is derived from βi and δα−i is the Dirac measure assigning probability
1 to {α−i} ⊆ ∆1

−i.

The first condition requires players’ beliefs about actions to satisfy indepen-
dence across co-players, and after a deviation of player j player i expects j to
behave in the continuation game as specified by j’s plan αj,j. Thus, all players
have the same first-order beliefs.

The second condition requires players’ beliefs about co-players’ plans to be
correct and never change, on or off the path. Any two players thus share the
same initial first-order beliefs about any other player and every player is able to
infer the correct beliefs of his or her co-players.

Definition 2 (Battigalli, Dufwenberg & Smith, 2019). Assessment (σi, βi) is
a sequential equilibrium if it is consistent and satisfies the following sequential
rationality condition:
for all h ∈ H and i ∈ I(h), supσi(·|h) ⊆ arg max

ai∈Ai(h)

ui(h, ai|βi).

14This is not a limitation to the model since it can be extended to games of incomplete
information. For an analysis of a psychological game of incomplete information see Attanasi et
al. (2016).
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This definition coincides with the traditional definition of sequential rational-
ity when players have standard preferences. An SE always exists when the utility
functions are continuous (Battigalli et al., 2019). The utility function analyzed in
this paper is discontinuous around τi, the fear threshold. A consequence is that
a SE does not always exist. The situation is illustrated in the first application.
However, if τi is sufficiently large, such that it is greater than the maximum in-
crease in peril and the players cannot transition to the fearful state of mind, then
there always is an SE that coincides with the SE in the game between players
with standard preferences.

3 Robbery

A walk in the park Consider the example of a person who takes a walk in
the park late at night, running the risk of being robbed. This interaction can be
modeled as the game in Figure 1. There are two players, the robber (player 1)
and the victim (player 2). The game has three stages. Player 1 is active in stage
0 and stage 2 (player 2’s only action in these stages is “do nothing”). Only player
2 is active in stage 1 (player 1’s only action is “do nothing”). The game has no
chance moves and any risk is endogenous.

Player 1 first decides whether to attempt a robbery (a) or not (n). Player 2
decides, conditional on an attempt, whether to comply (c) or resist (r). Player
1 decides, conditional on player 2 resisting, whether to flee the scene (f) or use
violence (v) to force the robbery.

The payoffs are normalized such that all outcomes following a robbery attempt
have a negative payoff for player 2. If player 1 does not attempt a robbery, both
players receive a zero payoff. If player 1 attempts a robbery and player 2 complies,
then player 1 receives a payoff of 50, and player 2 a payoff of −50. If player 2
resists and player 1 flees, each receives a payoff of −10. Both players are better
off without an attempt; player 1 avoids an unpleasant experience, and player 2 is
not chased by the police. If player 2 resists and player 1 uses violence, then player
1 receives a payoff of −200 and player 2 a payoff of −500; player 2 is injured and
player 1 is chased more fiercely by the police.

Clearly, the game between players with standard preferences has a unique SE
in ((n, f), r). However, if player 2 is fearful at his or her decision node, then he
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1

(0, 0)

n

2

(50,−50)

c

1

(−10,−10)

f

(−200,−500)

v

r

a

Figure 1: Robbery game.

or she maximizes the minimum payoff by choosing c. Player 1 has an incentive to
ensure that player 2 transitions to the fearful state of mind if his or her decision
node is reached. As we will see, player 1 can do so by randomizing between n

and a.
Player 2’s first-order beliefs α2 can be split into beliefs over own plan, α2,2,

and over player 1’s plan, α2,1. Player 2’s initial peril is

P2

(
h0|α2

)
=
[
50
(
1− αr2,2

)
+
(

500
(

1− αf2,1
)

+ 10αf2,1

)
αr2,2

]
αa2,1, (6)

where αa2,1 is player 2’s belief that player 1 plans a, αr2,2 is player 2’s plan of
choosing r; and αf2,1 is player 2’s belief that player 1 plans f , conditional on r.15

Player 2’s initial peril is zero if player 2 believes that player 1 plans n. All neg-
ative outcomes follows a, and the expected cost of negative outcomes depend on
player 2’s beliefs over the three terminal histories (a, c), ((a, f), r), and ((a, v), r).
Initial peril is strictly increasing in player 2’s belief that player 1 plans a. Initial
peril also depends on player 2’s own plan of choosing c or r, conditional on a.

Player 2’s updated peril if his or her decision node is reached is

P2 (a|α2) = 50
(
1− αr2,2

)
+
(

500
(

1− αf2,1
)

+ 10αf2,1

)
αr2,2. (7)

15This is a slight abuse of notation, but the abbreviations used to denote the conditional
probabilities of actions derived from players’ plans are justified by the increased readability of
the analysis.
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Since all negative outcomes follows a and all outcomes following a are negative,
player 2’s updated peril coincides with his or her expected material payoff.

Player 2’s increase in peril is

P ′2 (a|α2) =
(
1− αa2,1

)
×[

50
(
1− αr2,2

)
+
(

500
(

1− αf2,1
)

+ 10αf2,1

)
αr2,2

]
.

(8)

The first factor is player 2’s belief that player 1 will not choose a. The less
probable player 2 believes a is, the larger the increase in peril if a occurs. If
player 2 is certain that a will occur, αa2,1 = 1, then there is no increase in peril.
The occurrence of a has already been taken into account. If player 2 is almost
sure that a will not occur, αa2,1 ≈ 0, then the increase in peril is approximately
the expected cost of the negative outcomes that follows a. In other words, the
smaller the αa2,1, the greater the increase in peril. Note that the increase in peril
also depends on player 2’s own plan.

Player 1’s knows player 2’s fear threshold τ2 and his or her optimal plan is to
maximize the probability of a, conditional on player 2 transitioning to the fearful
state of mind if the second decision node is reached. If the third decision node is
reached, then player 1 maximizes own expected material payoff by choosing f .

Player 2’s optimal plan depends on whether he or she transitions to the fearful
state of mind after a. In the neutral state player 2 prefers r, and in the fearful
state he or she prefers c. If τ2 is sufficiently large, such that it is above player 2’s
maximum increase in peril after a, then player 2 cannot transition to the fearful
state of mind regardless of own and player 1’s plan. If τ2 is sufficiently small,
then player 1 can randomize between n and a such that player 2 transitions to
the fearful state regardless of own plan. However, for intermediate values of τ2,
whether player 2 transitions to the fearful state of mind depends on his or her
own plan.

Equilibria When τ2 > 50, the game has a unique SE in ((n, f) , r), just as in
a standard game. To check this, note that when τ2 > 50, then player 2 remains
in the neutral state of mind regardless of own and player 1’s plan. If his or
her decision node is reached, then player 2 maximizes own material payoff by
choosing r. Player 1 knows this and maximizes own expected payoff by choosing
(n, f). Further, ((n, f) , r) remains an SE also when 10 < τ2 ≤ 50. For this
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intermediate range of τ2, player 2’s state of mind depends on his or her own
plan. If player 2 plans r, then he or she remains in the neutral state after a and
maximizes own material payoff by choosing r. Player 1 maximizes own expected
payoff by choosing (n, f). However, when 10 < τ2 ≤ 50, there is an additional
SE in

(([
τ2
50
, 1− τ2

50

]
, f
)
, c
)
. If player 2 plans c, then he or she transitions to

the fearful state of mind after a, conditional on P ′2 (a|α2) = 50(1 − αa2,1) ≥ 10.
Player 1 can thus randomize such that player 2 transitions to the fearful state.
Player 1 maximizes own expected payoff by choosing

([
1− τ2

50
, τ2

50

]
, f
)
. Player

2 transitions to the fearful state after a, and maximizes own minimum payoff
by choosing c. Finally, when τ2 ≤ 10, then ((n, f) , r) cannot be an SE. To
verify, assume it were. Player 2 plans r, and transitions to the fearful state if
P ′2 (a|α2) = 10(1−αa2,1) ≥ τ2. Player 1 can randomize between n and a such that
player 2 transitions to the fearful state by choosing αa1,1 ≤ 1 − τ2/10. Player 2
transitions to the fearful state after a, and chooses c to maximize own minimum
payoff, contradicting that ((n, f)r) is an SE. When τ2 ≤ 10, the unique SE is(([

τ2
50
, 1− τ2

50

]
, f
)
, c
)
. If player 2 plans c, then he or she transitions to the fearful

state if P ′2 (a|α2) = 50(1 − αa2,1) ≥ τ2. Player 1 maximizes payoff by choosing([
τ2
50
, 1− τ2

50

]
, f
)
. Player 2 transitions to the fearful state if his or her decision

node is reached, and maximizes own minimum payoff by choosing c.

In other words, if τ2 is sufficiently large such that player 2 cannot transition to
the fearful state of mind regardless of own plan, then the unique SE is identical
to the SE in the game between players with standard preferences.

For intermediate fear thresholds, the game has two SE. If player 2 believes
that he or she will not transition to the fearful state after a and plans r, then he
or she will not transition and prefers r. If player 2 believes that he or she will
transition to the fearful state and plans c, then he or she will transition and prefers
c, conditional on player 1’s randomization. Due to the own-plan dependency of
peril, player 2’s beliefs are self-fulfilling.16

Finally, if τ2 is sufficiently small such that player 2 can transition to the fearful
state of mind regardless of own plan, then the game has a unique SE. Player 1
maximizes a, conditional on player 2 transitioning should his or her decision node

16While games of complete and perfect information with no relevant ties always have a unique
SE in standard games; this multiplicity of SE is not uncommon in psychological games and is
due to own-plan dependency of the utility function.
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be reached, and player 2 chooses c.

Proposition 1. If τ2 is sufficiently small such that player 2 can transition to the
fearful state of mind after a, then an SE exists in which αa1,1 > 0 and αr2,2 = 0.
If τ2 is sufficiently small such that player 2 can transition to the fearful state of
mind after a regardless of own plan, then this SE is unique.

In this game, a low fear threshold implies a welfare loss for player 2 as mea-
sured in material payoffs. A player 2 who is in the fearful state of mind complies
with the robbery attempt for a material payoff of −50, whereas a player 2 in
the neutral state resists for a material payoff of −10. Moreover, since the fear
thresholds are common knowledge, player 1 only makes an attempt with positive
probability if τ2 is sufficiently low. The lower τ2, the higher the probability of an
attempt.

Player 2’s preferences are time inconsistent. In the neutral state of mind he
or she would prefer to commit to r if such a commitment was possible. Player 2
can be interpreted as a player with two selves, one for each state of mind. Player
2 is in the neutral state of mind when the game begins. At his or her decision
node, player 2 is either in the neutral or in the fearful state of mind depending
on own and player 1’s plan. The neutral self prefers to resist any attempt since
player 1 would then flee the scene. However, the fearful self prefers to comply,
and player 2’s neutral self cannot control the fearful self.

The assumption that τ2 is common knowledge is crucial for the analysis above.
The caveat is that in reality, a robber finds it difficult to distinguish between fear
sensitive and insensitive victims.

When τi is private information The robbery game can be extended to a
situation in which τ2 is private knowledge.

Assume player 1 meets a player 2 who is randomly drawn from a population of
potential player 2’s with uniformly distributed fear thresholds, τ2 ∼ U(0, 60). In
other words, 1/6 are highly fear sensitive such that player 1 can always randomize
such that they transition to the fearful state of mind should their decision node be
reached. Another 1/6 are highly fear insensitive such that they cannot transition
to the fearful state of mind regardless of own and player 1’s plan. The remaining
4/6 may transition depending on their own plan. Assume, for simplicity, that
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half of them plans c and the other half r. Assume player 1 knows the population
distribution of τ2 and has to decide whether to make a robbery attempt.

Player 1 faces a trade of between increasing the probability of a successful
robbery attempt, by decreasing the probability of choosing a, and increasing the
probability of an attempt.

Player 1 chooses the probability of a that maximizes his or her expected
material payoff

max
αa
1,1∈[0,1]

[
50(

6− 5αa2,1
12

)− 10(1−
6− 5αa2,1

12
)

]
αa1,1. (9)

The first term is the share of player 2’s that will transition to the fearful state of
mind and choose c, given their beliefs αa2,1 of player 1 choosing a. In other words,
it is the share of player 2’s with τ2 ≤ 50(1 − αa2,1), minus the share of player 2’s
with τ2 ∈ [10, 50) whose self-fulfilling beliefs lead them to prefer r over c. The
second term is the share of player 2’s who remains in the neutral state of mind
and chooses r. Conditional on r, player 1 chooses f , and receives a payoff of −10.

Player 1 maximizes his or her expected payoff by choosing αa1,1 = 2
5
. A player

2 with τ2 ≤ 10 has a unique optimal plan in choosing c. If τ2 ∈ (10, 30], then
player 2 has self-fulfilling beliefs and both c and r are optimal plans. Finally, a
player 2 with τ2 ≥ 30 has a unique optimal plan in choosing r. The probability
of a successful attempt is 1/3.

Staying at home The game discussed above illustrates the intuition of the
model, but it does not capture the full story of the person who takes a walk late
at night. More realistically, player 2 makes an initial decision of whether to go for
a walk (g) or stay at home (s). The corresponding game is illustrated in Figure
2. Note that player 2 now makes the first decision.

The game has four stages. Player 2 is active in stage 0 and 2, and player
1 in stage 1 and 3. Player 2 receives a material payoff of 5 from choosing g,
conditional on n. If player 2 chooses s, then both players receive a zero payoff
zero. Remaining payoffs are as in the previous example.

The game between players with standard preferences has a unique SE in
((g, r) , (n, f)). As before, the SE of the game between players who can transition
to the fearful state of mind depends on τ2.
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Figure 2: Extended robbery game.

Player 2’s initial peril is

P2

(
h0|α2

)
=
[
50
(
1− αr2,2

)
+
(

500
(

1− αf2,1
)

+ 10αf2,1

)
αr2,2

]
αg2,2α

a
2,1, (10)

where αg2,2 denotes player 2’s plan of g. As before, player 2’s peril depends on his
or her own plan. Initial peril is zero if player 2 plans s or if player 2 believes that
player 1 plans to choose n.

Player 2’s updated peril if his or her second decision node is reached is

P2 ((g, a)|α2) = 50
(
1− αr2,2

)
+
(

500
(

1− αf2,1
)

+ 10αf2,1

)
αr2,2. (11)

Player 2’s updated peril, conditional on (g, a) corresponds to his or her expected
material payoff.

The increase in peril is

P ′2 ((g, a)|α2) =
(
1− αg2,2αa2,1

)
×[

50
(
1− αr2,2

)
+
(

500
(

1− αf2,1
)

+ 10αf2,1

)
αr2,2

]
.

(12)

If player 2 plans s with some positive probability, then the increase in peril is
higher than in the previous example, should his or her decision node be reached.
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Player 1’s optimal plan is still to maximize the probability of an attempt, condi-
tional on it being sufficiently small such that player 2 transitions to the fearful
state of mind after (g, a). Note that if player 2 plans s with some positive prob-
ability, then player 1 may, depending on player 2’s fear threshold, plan a with
certainty. As before, player 1 plans f if player 2 chooses r.

Equilibria When τ2 > 50, the game has a unique SE in ((n, f) , (g, r)), just
as in the standard game. Player 2 cannot transition to the fearful state of mind
regardless of own and player 1’s plan. As before, ((n, f) , (g, r)) remains an SE
also when 10 < τ2 ≤ 50. For this intermediate range of τ2, player 2’s state of
mind after (g, a) depends on his or her own plan. If player 2 plans (g, r), then
he or she remains in the neutral state after (g, a), and maximizes own mate-
rial payoff by choosing r. Player 1 maximizes own expected payoff by choosing
(n, f). However, when 10 < τ2 ≤ 50, then ((a, f) , (s, c)) qualifies as another
SE. If player 2 plans (s, c), then he or she transitions to the fearful state of
mind after (g, a) if P ′2 ((s, a)|α2) = 50 ≥ τ2. Thus, player 1 can guarantee a
transition by planning a, and player 2 maximizes own minimum payoff by choos-
ing c. Moreover, when 500/11 ≤ τ2 ≤ 50, then there is an additional SE in(
(g, c) ,

((
τ2
50
, 1− τ2

50

)
, f
))
. Player 2 plans (g, c) and transitions to the fearful state

after (g, a) if P ′2 ((g, a)|α2) = 50(1 − αa2,1) ≥ 10. Player 1 can randomizes such
that player 2 transitions by choosing αa1,1 = 1 − τ2/50. Player 2 maximizes own
minimum payoff after (g, a) by choosing c. In addition, player 2 is in the neutral
state of mind at his or her first decision node and maximizes own expected mate-
rial payoff by choosing g since αa2,1 = 1− τ2/50 is sufficiently small. Finally, when
τ2 ≤ 10, then ((n, f) , (g, r)) cannot be an SE. To verify, assume it were. Player 2
plans (g, r), and transitions to the fearful state if P ′2 ((g, a)|α2) = 10(1−αa2,1) ≥ τ2.
Player 1 can randomize between n and a such that player 2 transitions to the
fearful state by choosing αa1,1 ≤ 1 − τ2/10. Player 2 transitions to the fearful
state after (g, a), and chooses c to maximize own minimum payoff, contradict-
ing that ((n, f), (g, r)) is an SE. When τ2 ≤ 10 then ((a, f) , (s, c)) is the unique
SE. If player 2 plans (s, c), then he or she transitions to the fearful state if
P ′2 ((s, a)|α2) = 50 ≥ τ2. Thus, player 1 can guarantee a transition by planning
a, and player 2 maximizes own minimum payoff by choosing c.
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In other words, if τ2 is sufficiently large such that player 2 cannot transition to
the fearful state of mind regardless of own and player 1’s plan, then the unique SE
is identical to the SE in the game between players with standard preferences. For
an intermediate range of τ2, there is a multiplicity of SE. Because player 2’s peril
is own-plan dependent, his or her beliefs are self-fulfilling, and both ((n, f) , (g, r))

and ((a, f) , (s, c)) are SE. In addition, for a segment of the intermediate range
there is a third SE in which player 2 plans (g, c). Since the probability of a is
sufficiently small, player 2 maximizes own material payoff by choosing g. Player
2 is aware of the probability of a and that he or she will transition to the fearful
state of mind and choose c conditional on a. Finally, if τ2 is sufficiently small,
such that player 2 may transition to the fearful state of mind regardless of own
plan, then the unique SE is ((a, f), (s, c)).

Proposition 2. If τ2 is sufficiently small such that player 2 can transition to
the fearful state of mind after (g, a), then there is an SE in which αa1,1 > 0 and
α2,2 = (s, c). Moreover, if τ2 is sufficiently small such that player 2 can transition
to the fearful state after (g, a) regardless of own plan, then the SE is unique.

Fear insensitive victims go for a walk whereas fear sensitive victims stay inside
and forego the utility of taking a walk. However, if the probability of a robbery
attempt is sufficiently small, some fear sensitive victims may go for a walk while
planning to comply if an attempt occurs.

As before, player 2 can be thought of as having two selves, one for each state
of mind. At his or her first decision node, player 2 is the neutral self who prefers
to go for a walk and resist any robbery attempt. However, the neutral self is
aware that the fearful self may be in control at his or her second decision node. If
τ2 is sufficiently small, then the neutral self correctly anticipates that the fearful
self will be in control at the second decision node. Depending on the probability
of an attempt, the neutral self may either stay at home or go for a walk.

Observations The analysis of the robbery game relies crucially on player 2’s
payoffs following a robbery attempt being negative. More specifically, both the
action preferred in the neutral state of mind, r, and the action preferred in the
fearful state, c, lead to a negative outcome. Player 2 can transition to the fearful
state of mind while planning c, and c is the optimal plan if player 2 transitions
to the fearful state of mind.
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The analysis changes if the maximin action leads to a non-negative outcome.
Consider the game in Figure 3. Player 1 first decides whether to make an attempt.
Conditional on an attempt, player 2 decides between c and r. If player 2 chooses
r, then player 0 (chance) chooses v with probability ε. This can be interpreted
as player 1 trembling, and, by accident, choosing v.

1

(100, 100)

n

2

(150, 50)

c

0

(90, 90)

f

(−100,−400)

v

r

a

Figure 3: Robbery game with a single negative outcome.

In this game, a player 2 with a sufficiently small fear threshold cannot have
an optimal plan. To see this, assume that player 2 plans to choose r. However,
r is an optimal plan for player 2 only if he or she is in the neutral state of mind
if the decision node is reached. If player 2 plans r, and τ2 ≤ 400ε, then player
1 can randomize such that player 2 transitions to the fearful state of mind, and
prefers to deviate to c. Assume instead that player 2 plans to choose c. Choosing
c is an optimal plan only if player 2 is in the fearful state of mind when his or her
decision node is reached. However, the only outcome with a negative material
payoff for player 2 is ((a, v), r). If player 2 plans c, then his or her peril, initial
and updated, is zero. Player 2 remains in the neutral state of mind and prefers to
deviate to r. The own-plan dependency of player 2’s peril leads to self-negating
beliefs. Further, since player 2 has strict preferences over c and r for all values
of τ2, player 2 cannot have an optimal non-degenerate plan. Consequently, if
τ2 ≤ 400ε, then player 2 cannot have an optimal plan and no SE exists.

There are at least two possible solutions to the problem posed by this exam-
ple. The first is to construct an equilibrium that is consistent with rationality
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constraints by smoothing the utility function around τ . The utility function u can
thus be approximated by a continuous function u′ which has a value equivalent to
u’s value accept in the boundary around τ where u is discontinuous. The second
approach is to study ε equilibria (see e.g. Fudenberg & Levine, 1986; Jackson et
al., 2012; Monderer & Samet, 1989; Radner, 1980).

There is one additional source of non-existing equilibrium in this model. Con-
sider the case of a player 1 with an incentive to choose the probability of a as
small as possible without causing player 2 to transition to the fearful state of
mind. Since player 2’s peril is decreasing in the probability of a and player 2
transitions to the fearful state of mind at h if P ′2(h|α2) ≤ τ2, a player 1 with these
incentives does not have an optimal plan and no equilibrium exists.

4 Bank runs

Fear can be of importance also when the players’ incentives are aligned. The
game studied in this application is a multi-stage game between three personal
players and chance. Note that the personal players are the bank clients. The
bank is considered passive throughout the game. The game is a simplification
of Diamond and Dybvig’s (1983) seminal bank run game and is inspired by the
experimental work of Garratt & Keister (2009).

The game proceeds in three stages. In stage 0 the players have 1 monetary
unit and simultaneously decide whether to deposit it in the bank (d) or keep it
in the mattress (k). Chance is passive in stage 0. In stage 1 and 2 of the game,
all players with a deposit in the bank decide whether to withdraw it (w) or let it
remain in the bank (r). The player’s decision tree is illustrated in Figure (4).

If a player decides to withdraw the deposit, then the deposit is withdrawn
with probability 1. In addition, the players face an exogenous risk of ‘needing
money tomorrow’: in each stage each player faces the probability ε ∈ (0, 1) of
being selected by chance and forced to withdraw. I assume that the exogenous
risk of withdrawal is independent both between stages and between players.

Let D denote the number of players who deposited their money in the bank in
stage 0. After stage 0, the bank’s assets equals the units deposited by the players.
If D > 1, then the bank invests in a technology for an immediate cost of 1. This
technology can provide a return after stage 2. The bank needs to liquidate the
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Figure 4: The personal players’ decisions in the bank run game.

assets if the number of withdrawals in stage 1 and 2 is weakly greater than D−1.
Let Wk, k ∈ {1, 2} denote the number of withdrawals in stage 1 and 2 of the
game. The bank liquidates the assets in stage 1 if W1 ≥ D − 1, and in stage 2 if
W1 +W2 ≥ D− 1. If the bank does not liquidate the assets in either stage, then
the technology ‘bears fruit’ and provides a monetary return.

The payoffs are normalized such that only losing the full deposit is a negative
outcome. The normalized payoffs are illustrated in Table 1, conditional on all
players depositing their money in stage 0. If no player withdraws the deposit, then
they each receives a normalized payoff of 7. If only one player withdraws, then
he or she receives a normalized payoff of 1 and the two players not withdrawing
receive a normalized payoff of 5 each. If two players withdraw, then they each
receives a normalized payoff of 1, while the player not withdrawing loses the full
deposit and receives a normalized payoff of −1. This can occur either by the
two players withdrawing in the same stage or by one of them withdrawing in
stage 1 and the other in stage 2. If all three players withdraw their deposit,
then their normalized payoffs depend on the order in which they withdrew. If
all three players withdraw simultaneous, then they each receive a payoff of 2/3.
If one player withdraws in stage 1 and the other two in stage 2, then the player
withdrawing in stage 1 receives a normalized payoff of 1 and the other two a
normalized payoff of 1/2. The normalized payoff from not depositing the unit is
1.17

There is a multiplicity of SE in this game and the focus of this analysis is on a
17This application can be generalized to other payoffs. Crucial for the results is that only the

outcome in which the player loses his or her full deposit has a negative material payoff. The
other values are used to calculate and compare threshold values for ε for different equilibria.
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Table 1: Normalized material payoffs given that all players deposit their unit.

# Withdrawals πi(r) πi(w)

0 7 NA
1 5 1
2 −1 1
3 NA 2/3
1, 2 NA 1, 1/2

‘good strategy profile’ in which all players plan to deposit their unit in the bank
and not to withdraw in either stage.

Definition 3. The strategy profile σ is a good strategy profile if σi = (d, r, r) for
all i ∈ I.

Players with standard preferences Consider the game between players with
standard preferences. If they use the good strategy profile, then player i’s initial
expected payoff is18

E [πi| (3, r) ;αi] =(2/3)ε3 + (1− ε)ε2 + (1− ε)2ε

+ 2(1− ε)2εE [πi| ((3, 1), r) ;αi]

+ (1− ε)3E [πi| ((3, 0), r) ;αi] .

(13)

When the players use the good strategy profile, they only withdraw their deposit
if forced to do so. The first term is the (exogenous) probability that all players
withdraw in stage 1 for a normalized material payoff of (2/3). The second term
is the probability that two players withdraw. If player i is one of them, then he
or she receives a normalized material payoff of 1, otherwise he or she receives a
normalized material payoff of −1. The third term is the probability that only
player i withdraws in stage 1 for a normalized material payoff of 1. The fourth
term is the probability that a player j 6= i withdraws in stage 1 times the expected
material payoff from stage 2. Likewise, the fifth term is the probability that no
player withdraws in stage 1 times the expected material payoff from stage 2.

At the beginning of stage 2, the players observe the withdrawals in stage
1. If two or more players withdrew, then a bank collapse has occurred and the

18With a slight abuse of notation, the history is written as the number of deposits in stage 0
and the number of withdrawals observed after stage 1.
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remaining player (if any) loses all of his or her money. If a player j 6= i withdrew,
then player i’s expected payoff from not withdrawing in stage 2 is

E [πi| ((3, 1), r) ;αi] = 5(1− ε)2 + (1/2)ε2. (14)

If no player withdrew, then player i’s expected payoff from not withdrawing in
stage 2 is

E [πi| ((3, 0), r) ;αi] = (2/3)ε3 + (1− ε)ε2 + 11(1− ε)2ε+ 7(1− ε)3. (15)

The payoff from deviating and withdrawing the deposit is 1 in either stage. For
ε < 0.496 the good strategy profile is an SE when the players have standard
preferences.

Players with two states of mind Now consider players who may transition
to the fearful state of mind. The maximin action in stages 1 and 2 is to withdraw
the deposit. Assume the players have identical fear thresholds, τi, and that they
use the good strategy profile. In this case, peril is due to the exogenous risk of
withdrawal.

Player i’s initial peril, the probability that the other two players will be forced
to withdraw, is

Pi
(
h0|αi

)
= (1− ε)ε2 + 2(1− ε)3ε2 + (1− ε)4ε2. (16)

The first term is the probability that the other two players withdraw in stage
1. The second term is the probability that one of the other players withdraws
in stage 1 and the other in stage 2. The third term is the probability that both
players withdraw in stage 2.

If no player withdrew in stage 1, then the updated peril is

Pi ((3, 0)|αi) = (1− ε)ε2. (17)

The updated peril corresponds to the probability that both other players are
forced to withdraw in stage 2, but not player i.

The updated peril is smaller than the initial peril and P ′i ((3, 0)|αi) = 0. There
is no increase in peril and the players do not transition to the fearful state of
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mind. If at least 2 players withdrew in stage 1, then the bank has collapsed. Any
remaining player transitions to the fearful state of mind if sufficiently sensitive
to fear, but he or she has no action left to take and receives a payoff of −1.

The more interesting case is when only one player withdraws in stage 1. The
updated peril for the remaining players is

Pi ((3, 1)|αi) = (1− ε)ε. (18)

The updated peril corresponds to the probability that (only) the other player is
forced to withdraw in stage 2.

The increase in peril is

P ′i ((3, 1)|αi) = (1− ε)ε(1− (3(1− ε)3 + 1)ε). (19)

Let τ denote the maximum fear threshold for which the players transition to
the fearful state of mind conditional on observing one withdrawal in stage 1,
τ = (1− ε)ε(1− (3(1− ε)3 + 1)ε). Once fearful, the players prefer to deviate to
w. The plan of choosing r in both stages regardless the outcome of stage 1 can
therefore not be an optimal plan for such players.

Proposition 3. If the players are sufficiently sensitive to fear, τi ≤ τ , then the
good strategy profile cannot be an SE.

Fear sensitive bank run players may experience a welfare loss measured in
material payoffs. Moreover, this welfare loss is also imposed on their fear insensi-
tive co-players. The social welfare maximizing strategy profile that fear sensitive
players can coordinate on is to not withdraw in stage 1 and withdraw in stage 2
conditional on one player being forced to withdraw in stage 1. This strategy pro-
file is an SE for ε ≤ 0.422. In this SE no player is fearful on the equilibrium path.
The players coordinate on withdrawing conditional on observing one withdrawal
in stage 1, and withdrawing is not a negative outcome. In addition, when the
exogenous probability of withdrawal is sufficiently high, the game has a unique
equilibrium in which all players chooses k and no money is invested. When the
players may transition to the fearful state of mind, the exogenous probability for
this equilibrium to be unique is smaller than for players with standard prefer-
ences. Since fear sensitive players cannot commit to r conditional on observing
another player withdrawing, they are less willing to choose d to begin with.
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Fear can spread in a population of players with different fear thresholds. Con-
sider the game between three players, but only i has τi ≤ (1 − ε)ε(1 − (3(1 −
ε)3 + 1)ε. Assume the players use the good strategy profile, but that player j 6= i

is forced to withdraw in the first stage. This causes player i to transition to
the fearful state of mind. The third player, player k, knows the value of τi and
correctly anticipates that player i will withdraw in the next stage. Consequently,
his or her peril increases further and may reach τk, causing player k to transition
to the fearful state as well.

Proposition 4. A player with τi > τ may transition to the fearful state of
mind after observing one withdrawal in stage 1 if he or she knows that the other
remaining player will transition to the fearful state.

5 Public health intervention

As a final application, consider a simple example of a public health authority who
wants to inform the public about accurate estimates of the probability or cost
of contracting a disease. This example stem from the observation that in many
cases beliefs over the probability or cost of a negative outcome are mistaken.19

Consider a decision maker, player 1, who contemplates whether to take a
vaccine against a disease. Player 1 becomes immune to the disease if he or she
takes the vaccine. Otherwise player 1 faces a positive probability of contracting
it.

Player 1 holds correct beliefs over the probability of contracting the disease
and the cost of vaccination. However, he or she has underestimated the cost of the
disease.20 Recognizing this, the public health authority launches an information
campaign to inform player 1 about the true cost. Note that the public health
authority is not considered a player in this scenario.

The probability of contracting the disease (if not vaccinated) is denoted by
ε > 0, and the cost of vaccination is denoted by v, 0 < v < 1. Player 1’s prior
belief over the cost of the disease is denoted by d, and his or her updated belief
is denoted by d′, where d′ > d > 1.

19Or they may be correct but still possible to influence.
20A related situation is the more ethically dubious case when the authority wants to scare

people into a certain behavior by overstating the cost.
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The payoffs are normalized such that the only negative outcome is to con-
tract the disease. The normalized payoff from not taking the vaccine and not
contracting the disease is 1. The normalized payoff from taking the vaccine is
1− v. Finally, the normalized expected payoff of contracting the disease is 1− d
and 1 − d′, when player 1 is uninformed and informed, respectively. Player 1’s
maximin action is to take the vaccine.

First consider a player 1 who initially plans to take the vaccine. Player 1 is
risk neutral in the neutral state of mind and takes the vaccine if v ≤ εd. Because
the only negative outcome is contracting the disease, player 1’s initial peril is
zero, P1(h0;α1) = 0. He or she will take the vaccine and become immune to the
disease. The public health authority informs player 1 about the correct cost of
the disease. However, since player 1 plans to take the vaccine, the updated peril
is zero. There is no change in peril and, since v ≤ εd < εd′, player 1 is unaffected
by the information.

Next consider a player 1 who initially plans not to take the vaccine. That is,
v ≥ εd. Player 1’s initial peril is

P1(h0;α1) = ε× d. (20)

The public health authority informs player 1 about the correct cost of the disease.
As in traditional theory, player 1 changes his or her plan of taking the vaccine if
v ≤ εd′. In addition, a fear sensitive player may transition to the fearful state of
mind if the information causes a sufficiently large increase in peril.

Player 1’s increase in peril after receiving the information is

P ′1(info;α1) = ε(d′ − d). (21)

Player 1 transitions to the fearful state of mind if the increase in the cost of the
disease is sufficiently large such that τ1 is reached. In the fearful state of mind,
player 1 maximizes minimum payoff by taking the vaccine also when v > εd′. In
other words, a fearful player 1 will take the vaccine also when the cost outweigh
the benefits.

Proposition 5. Fear sensitivity can strengthen the behavioral response to infor-
mation that increases the expected cost of negative outcomes.

As in traditional theory, if v ∈ (εd, εd′], then information alters behavior. A
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player who remains in the neutral state of mind after receiving the information
takes the vaccine also when εd < v ≤ εd′. However, a player who transitions
to the fearful state of mind after receiving the information takes the vaccine
regardless the value of v. Fear sensitive players with a high cost of vaccination
may overconsume the vaccine.21 On the other hand, vaccines often have a positive
externality. Consider for example a disease which is highly transmissible, but the
players fail to take the positive externality into account. In such a situation, a
fear response may increase social welfare.

6 Concluding Remarks

This paper presents a model of players who can transition from a neutral to
a fearful state of mind. In the neutral state of mind, the players maximize
own expected material payoff. In the fearful state of mind, they maximize own
minimum material payoff. The players are in the neutral state of mind when the
game begins and transition to the fearful state after a sufficiently large increase
in the expected cost of negative outcomes; outcomes bad enough to potentially
instill fear when anticipated.

The focus of this paper is on how fear affects behavior through its effect on a
player’s risk aversion, but fear is also an unpleasant emotion. While the disutility
of experiencing fear is an incentive for players to avoid fearful situations, this
paper abstract from this to focus on how behavior is affected once a fearful state
is reached.

The interactions studied in this paper are assumed to be sufficiently fast such
that there is no time to transition back to the neutral state of mind. However,
many interactions are slower and allow for fear to fade away. Time can be ex-
plicitly modeled using Psychological game theory (Battigalli et al., 2019) and the
model can be expanded to interactions which take place over several time peri-
ods. The passing of a time period may cause a player to transition back to the
neutral state of mind. Such a model requires an assumption regarding a fearful
player’s degree of sophistication which is not necessarily the same as the degree
of sophistication in the neutral state of mind.

21The cost of vaccination may for example include expected side effects that may vary between
players with different health statuses.
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The transition from the neutral to the fearful state of mind is determined
by beliefs over outcomes. This definition rules transitions caused by a player’s
beliefs over others’ beliefs. For example, someone might become fearful if he or
she believes that their boss believes that he or she has low productivity. However,
one can model this situation as a player with the negative outcome of losing his
or her job. An increase in the belief that the boss believes that he or she has low
productivity causes an increase in the probability that he or she will lose the job,
which may trigger fear.

Players’ increased concern with risk in the fearful state of mind causes an
strengthened change in behavior that may appear as an overreaction. This ob-
servation is in line with empirical and experimental research that finds a ’residual’
change in behavior after bad news or adverse events (Guerrero et al., 2012; Guiso
et al., 2018; Piccoli et al., 2017; Wang & Young, 2020). In other words, the be-
havioral response is stronger than what can be explained by traditional factors
alone. The residual change in behavior is however consistent with an emotion-
based change of the utility function.

This paper studies sophisticated players who can perfectly predict own and
others’ state transitions and the behavioral consequences thereof. In the sequen-
tial equilibrium for psychological games, the players are certain about own and
others’ plans, and never change their minds about them. Any deviations from
the plans are interpreted as mistakes. This is a strong assumption, especially
since the players’ decision utility may depend on both own and others’ plans.
However, the analysis shows that fear is of importance even when players can
perfectly predict own and others’ state transitions. Whereas the study of naïve
players who cannot perfectly predict own emotional response is outside the scope
of this paper, it is an interesting avenue for future research.

It is natural to ask whether fear, modeled as belief-dependent risk aversion,
makes sense from an evolutionary perspective. Aumann (2019) argues that people
use rules to guide their behavior and that these behavioral rules are the product
of evolutionary forces. Rather than maximizing utility over actions, people adopt
rules of behavior that do well in usual, naturally occurring situations. A simple
example of such a rule related to fear could be ‘maximize expected utility when
in a safe environment while minimize the worst losses when in peril’.

Besides robberies, bank runs, and public health policy, fear may be impor-
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tant in understanding for example conflict; environmental dangers and climate
risk; and financial decision making. These applications are potentially of great
importance and are left as an avenue for future research.
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